Part Number Hot Search : 
N60C3 1N4948G H9N80 9838U 04PD215 PS253 232EC 74HC15
Product Description
Full Text Search
 

To Download IRF7749L2TR1PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 directfet   power mosfet  
         97434 irf7749l2trpbf IRF7749L2TR1PBF directfet  isometric  applicable directfet outline and substrate outline   rohs compliant, halogen free   lead-free (qualified up to 260c reflow)  ideal for high performance isolated converter primary switch socket  optimized for synchronous rectification  low conduction losses  high cdv/dt immunity  low profile (<0.7mm)  dual sided cooling compatible   compatible with existing surface mount techniques   industrial qualified description the irf7749l2tr/tr1pbf combines the latest hexfet? power mosfet silicon technology with the advanced directfet tm packaging to achieve the lowest on-state resistance in a package that has a footprint smaller than a d 2 pak and only 0.7 mm profile. the directfet package is compatible with existing layout geometries used in power applications, pcb assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note an-1035 is followed regarding the manufacturing methods and processes. the directfe t package allows dual sided cooling to maximize thermal transfer in power systems. the irf7749l2tr/tr1pbf is optimized for high frequency switching and synchronous rectification applications. the reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key fo r system reliability improvements, and makes this device ideal for high performance power converters. 11/17/09 fig 1. typical on-resistance vs. gate voltage  click on this section to link to the appropriate technical paper.  click on this section to link to the directfet website.   surface mounted on 1 in. square cu board, steady state.  t c measured with thermocouple mounted to top (drain) of part.   repetitive rating; pulse width limited by max. junction temperature.  starting t j = 25c, l = 0.035mh, r g = 25 , i as = 120a.  fig 2. typical on-resistance vs. drain current sb sc m2 m4 l4 l6 l8 d s g d s s s s s s s absolute maximum ratin g s parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) a i d @ t a = 25c continuous drain current, v gs @ 10v (silicon limited)  i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current e as single pulse avalanche energy  mj i ar avalanche current  a 120 375 260 max. 140 33 800 20 60 200 4.0 6.0 8.0 10.0 12.0 14.0 16.0 v gs , gate-to-source voltage (v) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 t y p i c a l r d s ( o n ) , ( m ) t j = 25c t j = 125c i d = 120a 40 80 120 160 200 i d , drain current (a) 0.80 1.00 1.20 1.40 1.60 t y p i c a l r d s ( o n ) ( m ) t c = 25c v gs = 6.0v v gs = 8.0v v gs = 10v v gs = 14v v dss v gs r ds(on) 60v min 20v max 1.1m @ 10v q g tot q gd v gs(th) 200nc 71nc 2.9v


  2 www.irf.com    repetitive rating; pulse width limited by max. junction temperature.  pulse width 400 s; duty cycle 2%. static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 60 ??? ??? v ? v dss / t j breakdown voltage temp. coefficient ??? 0.03 ??? v/c r ds(on) static drain-to-source on-resistance ??? 1.1 1.50 m v gs(th) gate threshold voltage 2.0 2.9 4.0 v v gs(th) / t j gate threshold voltage coefficient ??? -10 ??? mv/c i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 gfs forward transconductance 280 ??? ??? s q g total gate charge ??? 200 300 q gs1 pre-vth gate-to-source charge ??? 36 ??? q gs2 post-vth gate-to-source charge ??? 12 ??? nc q gd gate-to-drain charge ??? 71 110 q godr gate charge overdrive ??? 100 ??? see fig. 9 q sw switch charge (q gs2 + q gd ) ??? 83 ??? q oss output charge ??? 67 ??? nc r g gate resistance ??? 1.1 ??? t d(on) turn-on delay time ??? 17 ??? t r rise time ??? 43 ??? t d(off) turn-off delay time ??? 78 ??? ns t f fall time ??? 39 ??? c iss input capacitance ??? 12320 ??? c oss output capacitance ??? 1810 ??? pf c rss reverse transfer capacitance ??? 850 ??? c oss output capacitance ??? 8060 ??? c oss output capacitance ??? 1310 ??? diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 200 (body diode) a i sm pulsed source current ??? ??? 800 (body diode)
v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 45 68 ns q rr reverse recovery charge ??? 78 120 nc mosfet symbol r g =1.8 v ds = 25v conditions v gs = 0v, v ds = 120v, f=1.0mhz v gs = 0v, v ds = 1.0v, f=1.0mhz v ds = 16v, v gs = 0v v dd = 30v, v gs = 10v v gs = 0v ? = 1.0mhz i d = 120a v ds = v gs , i d = 250 a v ds = 60v, v gs = 0v conditions v gs = 0v, i d = 250 a reference to 25c, i d = 2ma v gs = 10v, i d = 120a t j = 25c, i f = 120a, v dd = 30v di/dt = 100a/ s t j = 25c, i s = 120a, v gs = 0v showing the integral reverse p-n junction diode. i d = 120a v ds = 48v, v gs = 0v, t j = 125c v gs = 20v v gs = -20v v gs = 10v v ds = 10v, i d = 120a v ds = 30v


  www.irf.com 3 fig 3. maximum effective transient thermal impedance, junction-to-case    surface mounted on 1 in. square cu board, steady state.  t c measured with thermocouple incontact with top (drain) of part. used double sided cooling, mounting pad with large heatsink.  mounted on minimum footprint full size board with metalized back and with small clip heatsink.  r is measured at   
   surface mounted on 1 in. square cu board (still air).   mounted on minimum footprint full size board with metalized back and with small clip heatsink. (still air) absolute maximum ratin g s parameter units p d @t c = 25c power dissipation w p d @t c = 100c power dissipation p d @t a = 25c power dissipation  t p peak soldering temperature c t j operating junction and t stg storage temperature range thermal resistance parameter typ. max. units r ja junction-to-ambient  ??? 45 r ja junction-to-ambient  12.5 ??? r ja junction-to-ambient  20 ??? c/w r j-can junction-to-can  ??? 1.2 r j-pcb junction-to-pcb mounted ??? 0.5 270 -55 to + 175 max. 3.3 125 63 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 0.10804 0.000171 0.61403 0.053914 0.45202 0.006099 0.00001 0.036168


  4 www.irf.com fig 5. typical output characteristics fig 4. typical output characteristics fig 6. typical transfer characteristics fig 7. normalized on-resistance vs. temperature fig 8. typical capacitance vs.drain-to-source voltage fig 9. typical total gate charge vs gate-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 25c 3.8v vgs top 15v 10v 7.0v 5.0v 4.5v 4.3v 4.0v bottom 3.8v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 175c 3.8v vgs top 15v 10v 7.0v 5.0v 4.5v 4.3v 4.0v bottom 3.8v 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) v ds = 25v 60 s pulse width t j = 175c t j = 25c t j = -40c -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 120a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 40 80 120 160 200 240 280 q g total gate charge (nc) 0 2 4 6 8 10 12 14 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 48v v ds = 30v v ds = 12v i d = 120a


  www.irf.com 5 fig 13. typical threshold voltage vs. junction temperature fig 12. maximum drain current vs. case temperature fig 10. typical source-drain diode forward voltage fig11. maximum safe operating area fig 14. maximum avalanche energy vs. drain current 0.2 0.4 0.6 0.8 1.0 1.2 1.4 v sd , source-to-drain voltage (v) 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) v gs = 0v t j = 175c t j = 25c t j = -40c 25 50 75 100 125 150 175 t c , casetemperature (c) 0 40 80 120 160 200 i d , d r a i n c u r r e n t ( a ) -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0a i d = 1.0ma i d = 250 a 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 200 400 600 800 1000 1200 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 20a 31a bottom 120a 0 1 10 100 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100 sec dc


  6 www.irf.com fig 17.  

    for n-channel hexfet   power mosfets fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 19a, 19b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =
 t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t a p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
     
    

  
 ? 
     ? 
  ? 
       
 ?  

    ?     !  "#"" ?   

    $
%% ? "#"" &   #  + - + + + - - -         1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 40 80 120 160 200 240 280 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 120a


  www.irf.com 7 fig 18a. gate charge test circuit fig 18b. gate charge waveform fig 19b. unclamped inductive waveforms t p v (br)dss i as fig 19a. unclamped inductive test circuit fig 20b. switching time waveforms fig 20a. switching time test circuit r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v '  vds vgs id vgs(th) qgs1 qgs2 qgd qgodr 1k vcc dut 0 l s 20k v ds 90% 10% v gs t d(on) t r t d(off) t f   ( ) 1 *   $
0.1 %        + -  


  8 www.irf.com g = gate d = drain s = source d d d d d d ss s s g ss ss 
         please see an-1035 for directfet assembly details and stencil and substrate design recommendations


  www.irf.com 9 directfet  part marking note: for the most current drawing please refer to ir website at http://www .irf.com/package 
          please see an-1035 for directfet assembly details and stencil and substrate design recommendations max 0.360 0.280 0.236 0.026 0.024 0.048 0.017 0.030 0.017 0.058 0.106 0.028 0.003 0.007 imperial metric dimensions min 0.356 0.270 0.232 0.022 0.023 0.046 0.015 0.029 0.015 0.053 0.099 0.023 0.001 0.003 code a b c d e f g h j k l m n p min 9.05 6.85 5.90 0.55 0.58 1.18 0.98 0.73 0.38 1.34 2.52 0.59 0.03 0.09 max 9.15 7.10 6.00 0.65 0.62 1.22 1.02 0.77 0.42 1.47 2.69 0.70 0.08 0.18 logo gate marking batch number part number date code line above the last character of the date code indicates "lead-free"


  10 www.irf.com directfet  tape & reel dimension (showing component orientation). reel dimensions note: controlling dimensions in mm std reel quantity is 4000 parts. (ordered as irf7749l2pbf). standard option (qty 4000) min 330.0 20.2 12.8 1.5 100.0 n.c 16.4 15.9 code a b c d e f g h max n.c n.c 13.2 n.c n.c 22.4 18.4 18.4 min 12.992 0.795 0.504 0.059 3.937 n.c 0.646 0.626 max n.c n.c 0.520 n.c n.c 0.889 0.724 0.724 metric imperial loaded tape feed direction min 11.90 3.90 15.90 7.40 7.20 9.90 1.50 1.50 note: controlling dimensions in mm code a b c d e f g h max 12.10 4.10 16.30 7.60 7.40 10.10 nc 1.60 min 0.469 0.154 0.626 0.291 0.284 0.390 0.059 0.059 max 0.476 0.161 0.642 0.299 0.291 0.398 nc 0.063 dimensions metric imperial


  www.irf.com 11 data and specifications subject to change without notice. this product has been designed and qualified to msl1 rating for the industrial market. 
  
 


 
 




 



 !
"
# qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 11/09  qualification standards can be found at international rectifier?s web site http://www .irf.com/product-info/reliability  higher qualification ratings may be available should the user have such requirements. please contact your international rectifier sales representative for further information: http://www .irf.com/whoto-call/salesrep/  applicable version of jedec standard at the time of product release. msl1 (per jedec j-std-020d ??? ) rohs compliant comments: this family of products has passed jedec?s industrial qualification. ir?s consumer qualification level is granted by extension of the higher industrial level. qualification information ? qualification level industrial ?? (per jedec jesd47f ??? guidelines) yes moisture sensitivity level dfet2 note form quantity irf7749l2trpbf directfet2 large can tape and reel 4000 "tr" suffix IRF7749L2TR1PBF directfet2 large can tape and reel 1000 "tr1" suffix part number package type standard pack


▲Up To Search▲   

 
Price & Availability of IRF7749L2TR1PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X